
Genetic evaluation for Saved feed

including metabolic efficiency

Rasmus Bak Stephansen, SEGES Ulrik S. Nielsen, SEGES Jan Lassen, VG **Daniel Gordo, AU**

STØTTET AF

mælkeafgiftsfonden

Martin Lidauer, Luke Jukka Pösö, FABA Freddy Fikse, Växa Sverige **Gert Pedersen Aamand, NAV**

The overall aim of Saved feed

Saved feed

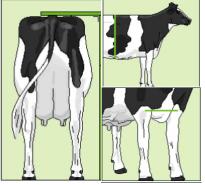
- Maintenance efficiency (Aug '19)
- Saved feed in NTM (Aug '20)
- Metabolic efficiency (Nov '20)

EBV (Saved feed)

=

EBV (Maintenance efficiency) + EBV (Metabolic efficiency)

Based on feed intake, yield, weight, etc.



Data used for maintenance evaluation

- Maintenance efficiency
 - Weight data
 - Scale (90,000 cows)
 - Tape (800,000 cows)
 - Conformation (indicator)
 - Stature, body depth and chest width

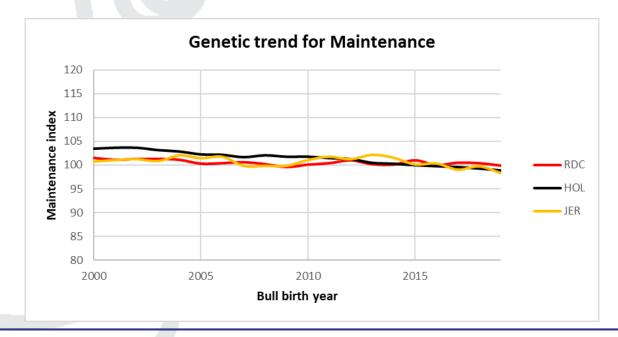
Genetic parameters Maintenance

- Maintenance
 - Heritability: 0.65 for HOL+RDC and 0.58 for JER
 - Genetic correlation across parties: highly (>0.98)
- Genetic correlation to indicator traits: moderate/ high (see Table)

HOL/RDC/JER	Stature	Body depth	Chest width
Maintenance	0.65-0.68	0.48-0.51	0.53-0.58

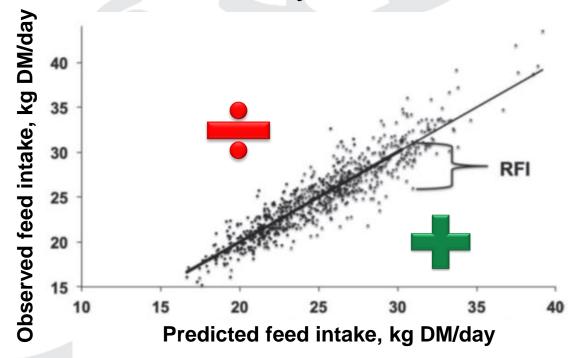
Genomic reliabilities Maintenance

Genomic reliabilities (pedigree + genomic information)


	All breeds		
Milk yield traits	70%		
Maintenance eff.	60%		

Genetic trend for cows **Maintenance**

- Slightly negative trend for HOL and JER → more heavy **COWS**
- No trend for RDC



Metabolic efficiency – what is that?

Metabolic efficiency = observed feed intake - predicted feed intake

Predicted feed intake is based on yield, maintenance, mobilization, etc.

Feed intake data for metabolic efficiency

- Nordic HOL (Foulum) | Repeated records from 1st to 3rd parity
- HOL abroad (AUS, CAN, USA) | Repeated records from 1st to 6th parity
- Nordic RDC (Luke) | Repeated records within 1st parity
- Nordic JER (CFIT) | Repeated records from 1st to 6th parity

	Nordic HOL		Abroad HOL		Nordic RDC		Nordic JER	
	N cows	N obs	N cows	N obs	N cows	N obs	N cows	N obs
1st parity	753	25,542	962	17,953	725	20,355	253	5,602
2st parity	553	18,435	786	8,741			205	4,450
3+ parity	341	10,138	465	5,039			340	7,585
N cows Genotyped	79 43		1,5 1,4		72 37	_	50 47	

Genetic parameters Metabolic efficiency

Assumptions

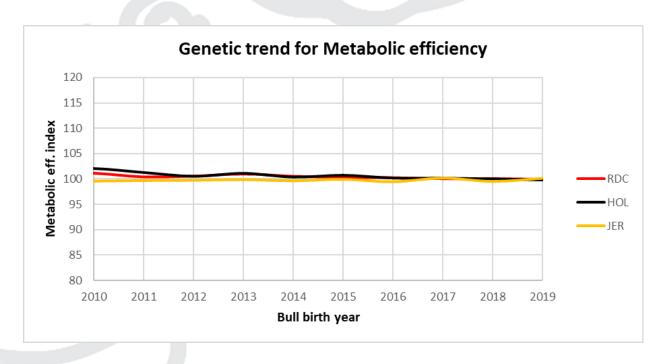
- Heritability: 15% for all 3 breeds
- Same trait across parities and within lactation
 - It is a rough assumption but a consequence of few data
- Assumptions are based on analysis and results from the Saved feed Group
- For the first time in NAV, a Single Step model is used to calculate GEBVs

Genomic reliabilities Metabolic efficiency

Extra reliability in addition to pedigree information

- Tested for production traits from research data
 - Finnish RDC data 310 cows, Lidauer, M.
 - EDGP HOL data 1,650 cows, Stephansen, R.S. & Nielsen, U.S.

	RDC	HOL
Metabolic eff.	1-3%	3-7%


More females in the reference population will increase genomic reliability

Genetic trend Metabolic efficiency

- No trend for any of the breeds
- **Expected since the trait is unselected**

Standardization of Metabolic eff.

- The aim is to standardize Metabolic eff.
 breeding values on maintenance scale
 - Genetic variation is assumed to be the same for Maintenance and Metabolic eff.
 - The genomic reliability is assumed to be 3%

Results from standardization

- Average and standard deviation for different groups
 - Candidates were born from 2017-2019

Breed	Animal group	N animals	Mean (SD) index
RDC	Phenotyped cows	679	102.1 (3.9)
RDC	Candidate heifers	58,156	100.2 (1.9)
RDC	Candidate bulls	7,562	100.0 (1.7)
RDC	Bulls with offspring	251	101.5 (3.6)
HOL	Phenotyped cows	798	101.0 (7.6)
HOL	Candidate heifers	111,858	100.3 (1.8)
HOL	Candidate bulls	9,848	100.0 (1.7)
HOL	Bulls with offspring	141	103.4 (5.6)
JER	Phenotyped cows	474	100.1 (3.0)
JER	Candidate heifers	28,642	99.8 (1.75)
JER	Candidate bulls	1,401	100.0 (1.74)
JER	Bulls with offspring	110	100.0 (2.2)

Effect of 1 index unit Saved feed

- The effect of 1 index unit is the same for maintenance and metabolic efficiency
 - RDC = 9.8 kg DMI per annual cow
 - **HOL = 8.2 kg DMI per annual cow**
 - JER = 6.7 kg DMI per annual cow
- **Example for Saved feed:**
 - Offspring with parent average of 110 is expected to eat 70-100 kg less DMI in an average lactation

70-100 kg

Correlations in Saved feed

- The correlation between the index for maintenance and metabolic eff. is 0
 - Expected from the definition of metabolic eff.
- Primarily, the maintenance breeding values influence the Saved feed Index
 - Caused by low reliability on metabolic eff. GEBVs

	RDC		HOL		JER	
	Saved feed	Maint.	Saved feed	Maint.	Saved feed	Maint.
Maintenance	0.98	1.00	0.97	1.00	0.97	1.00
Metabolic eff.	0.17	-0.01	0.21	-0.01	0.21	-0.02

Correlations between NTM sub-indices and metabolic eff.

- All correlations are close to 0 as expected with few feed intake data
 - Remember low reliability on GEBVs for metabolic eff.
 - We expect 0 correlation to frame and production

Born 2017 & 2018	RDC	HOL	JER
N bulls	5195	6252	951
NTM	0.00	-0.07	0.12
Y-index	0.02	-0.07	0.05
Fertility	-0.06	0.01	-0.03
Udder health	-0.04	0.00	-0.01
General health	0.01	0.01	-0.06
Frame	0.02	0.02	-0.14
Udder	-0.06	-0.04	0.06

Final remarks

- Both component traits of Saved feed are now available
- Selection for the Saved feed index will lead to:
 - More profitable cows
 - More efficient and climate friendly cattle
- With a higher reliability on metabolic eff. indices, we can expect bigger contribution to NTM

